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Based on the previous work on rational thermodynamics of a fluid-solid mixture in linear ap­
proximation, an expression for the diffusion flux was derived. This (with tensor phenomeno­
logical coefficients) depends linearly on the temperature gradient and on the isothermal gradient 
of chemical potential, hence not only on the gas concentration gradient but also on the second 
deformat ion gradient of the polymer and on the gradien t of the internal parameter (characterizing 
long-term memory effects in the polymer). Nonequilibrium values of the internal parameter 
may cause a diffusion flux also directly. However, this is not the case in an isotropic solid or 
fluid polymer, where the tensor phenomenological coefficients and thus also the diffusion 
coefficient are reduced to scalars. The results are discussed in relation to the classical diffusion 
in fluids. 

Diffusion of gases in polymers is accompanied by phenomena known as the so-called 
nonfickian diffusion 1 •2 , which are difficult to describe in terms of classical theo­
ries, e.g. linear irreversible thermodynamics 3 • Rational thermodynamics developed 
during the last two decades4 •5 is, in principle, suitable to describe such phenomena, 
since it is not limited by linearity or closeness to equilibrium. Our preceding work6 

was concerned with the rational thermodynamic theory of mixtures of a fluid (g) 
and a substance with arbitrary symmetry (s), the linearized version of which leads 
to an equation for nonfickian diffusion of a gas (g) in a polymer (s), as shown in the 
text below. 

We start from the equations for a linear model mixture of a fluid (g) and solid (s) 
in ref.6 and use the same notation; the equations taken from ref.6 will be numbered 
with the prefix I, e.g. Eq. (I-22) is equation (22) from ref.6. 

We define the chemical potential g of the gas 

g - (1) 

where fl denotes density of the mixture, J its ( specific) free energy and flg density 
of the gas (compare Eqs (/-21,22,42)). 
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By using Eqs (/-22, 59) we obtain 

(2) 

where Pg is the partial pressure and fg (partial) free energy of component g. Hence, 
9 = (j(eg , F, T, P), F denotes the deformation gradient of the polymer (s), T tempera­
ture, P internal parameter, characterizing the long-term memory of the polymer. 

Now, we express the interaction volume force k from the momentum balance 
(/-10) of the gas and use Eqs (1), (2), (/-22, 58) to obtain 

Dv ~l ~ k = e --L! - e b + e grad 9 + ---..L.! h + e _8 h - grad e { (3) 
II Dt g g II oeg S oeg gJ g , 

where Vg denotes velocity of the gas, DgVgfDt its acceleration (ef. Eq. (/-3»), bg external 
volume force, and h = grad eg. The term k can be expressed from the constitutive 
equation (/-72) and the last gradient is calculated on the basis of Eq. (I-56). After 
rearrangement and using Eq. (2) we obtain an equation for the diffusion rate u 

K k Dgvg b (BPg K) 
- 1 U = - 0 + eg gradT 9 + eg -- - eg g + -1 + 2 g, 

Dt BT 
(4) 

where 1 denotes unittensor (the tensor coefficients K~j and K~ are in direct notation) 
and the isothermal gradient of chemical potential is defined as 

with g = grad T. Hence, 

o{j 
gradT 9 == grad 9 - - g 

BT 

B{j B{j . B A 

(grad g)1 = - hi + - GJJKF- 1K• + -.!!.. (grad p)'. 
T oeg oFjJ op 

Eq. (4) enables us to express the diffusion flux j of the gas in the solid 

(5) 

(6) 

(7) 

in the form used in irreversible thermodynamics of liquid mixtures3 •4 (we assume 
the existence of the inversion Kl1) 

(8) 
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Here, the driving force of diffusion is defined as (Eq. (51.4) in ref.4 ) 

Dv 
Y = gradT g - b +----L! 

g Dt 

and the phenomenological coefficients are the vector 10 and the tensors Land Lq 

l - K-1k L - 2K- 1 o = -{lg 1 0' = {lg 1 , 

(9) 

(10) 

It is obvious that these coefficients depend on Pg, F, T, and p. (An equation similar 
to (8) can be obtained from the constitutive equations for the heat flux (I-73) by sub­
stituting Eq. (4) for u; it turns out that the Onsager reciprocal relations follow from 
rational thermodynamics only after introducing additional asumptions, as shown in 
ref.\ Section 51.) 

In practical cases, we usually have to deal with isothermal diffusion (g = 0) without 
external fields and inertial forces (bg = 0, Dgvg/Dt = 0) (ref.\ Section 52). The non­
fickian diffusion will then be described by the equation 

where the vector 10 and tensor L of the second order are functions of {lg' F, T, and p. 
We shall discuss first the terms connected with the coefficient L. The first one 

belongs to the classical law of Fick (the deviations are discussed below with Eqs (13) 
and (14» with a tensor diffusion coefficient, L(oO/o{lg) (ref. 3 , Eq. IV-23) and the re­
maining terms are the cause of "nonfickian" diffusion: the second one expresses 
the effect of deformation on the diffusion flux (due, e.g., to swelling of the polymer 
during the experiment) and the third gives the effect of the gradient of the internal 
parameter p. This parameter is involved implicitly also in the term 10 , however when 
P attains its "equilibrium" value p+ (for which Eq. (1-75) is valid) the vector 10 is 
equal to zero (see the first one of Eqs (10) and (1-76». This occurs (except for the 
trivial case of equilibrium (1-46) where no diffusion takes place) if the relaxation 
processes related to P are sufficiently rapid or negligible (material without influence 
of the internal parameter). Besides that, the vector 10 is equal to zero in an isotropic 
and liquid membrane material. In isotropic material, this is clear from the first 
of equations (1-84) and (10); the second term in Eq. (6) can be replaced in an analog­
ous way as in deriving the last expressions in (I-80) and (1-72). Thus, nonfickian dif-
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fusion in an isotropic material (isothermal without external and inertial forces) 
is described by the equation 

_/ = LJi (Oi] hi + jli] (grad S)lki + vi] (grad P)J) 
O{lg VBlk op , 

(12) 

since in this case g = g({lg, S, T, P) and L = L({lg, S, T, P). Here, the terms have 
similar significance as in Eq. (11). The tensor L as well as the tensor diffusion coeffi­
cient L(ogjo{lg) in an isotropic material is reduced to a scalar only in special cases6 , 

e.g. in undistorted reference, during volume expansion or compression, and in in­
finitesimal deformations. 

Finally, if the polymer material is also liquid, the vector 10 is cancelled again 
(we have again the first of equations (10) and (I-84), compare (I-88)) and the second 
term in Eq. (6) is replaced as in the derivation of the last term in Eq. (I-88) from the 
last term in Eq. (I-72). The tensor coefficient L is reduced to a scalar L as follows 
by introducing Eq. (I-88) into (3) with regard to the second of Eqs (10); similarly Lq 
is also reduced to a scalar. Thus, the diffusion of a fluid (g) in a fluid (s) (isothermal 
without external and inertial forces) will be described by the equation 

. (VU aU ou ) - J = L - h + - hs + -;;- grad P , 
o{lg DOs (jp 

(13) 

where g = U(Ug , Os, T, [J) and hs = grad Os; the scalar phenomenological coefficient 
L depends also on l!g' US, T, and p. 

The meaning of the second term in Eq. (11) or (12) with respect to diffusion in a mix­
ture of liquids now becomes apparent. If we neglect the last term (i.e. the effect 
of i nternal parameters), we should obtain the classical law of Fick, however this is the 
case only for hg ~ 0 (e.g. at low concentrations of the diffusing component), leading 
to the uifTusion coefficient L(cgjc{lg). In the more general case, the difference is due 
to the fact that the derivation of Fick's law from irreversible thermodynamics3 

involves T, P, and Wg (wg is mass fraction of component (g) and P total pressure) 
rather than T, Og' and eg. This is due to replacement of the density in the equations 
Og = wg{l and Os = (l - \Vg) 0 by using the inverted relation P = P(Og, (l., T); P is 
equal to the sum of partial pressures of the components, Pg + p. (compare Eqs 
(/-87,59,86); P is uisregarded). The isothermal gradient based on these variables 
is different from that in Eq. (5) (compare Eq. IIl-23 in ref.3 or (51.3) in ref.4); if we 
use it instead of (5) (after substituting Eq. (I-88) into (3)), we obtain Eq. (51.5) 
in rcf. 4 for a binary mixture (we disregard the friction tensor and use Eq. (43.41) 
in ref. 4), whence the classical results can be obtained (Sections 51 and 52 in ref.\ 
Xl,2 in ref. 3). For example, for isothermal diffusion without external and inertial 
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forces and with the use of the new variables, Eq. (13) is replaced by 

-j = L - grad Wg + - grad P + - grad fJ , . (Og 1'g Og) 
oWg clP ofJ 

(14) 

where g = geT, P, wg , fJ) and L = L(T, P, wg , fJ). This equation is in the case of iso­
thermal and isobaric diffusion (without external and inertial forces and internal 
parameter fJ) reduced to the classical Fick law 

- j = L ~g grad w 
~ g 
uWg 

(15) 

with the diffusion coefficient L(ogjowg) (compare Sections 51 and 52 in ref.4 or XI 
in ree). As mentioned in ref. 6, the phenomenological coefficients Land L are 
nonnegative or positively semidefinite; the same applies to the diffusion coefficients, 
since the thermodynamic multiplier is positive owing to stability (see, e.g., ref.4, 
Section 48). 

We thus arrive at the conclusion (disregarding internal parameters) that the second 
deformation gradient G in the driving force (l1) for fluids corresponds to baro­
diffusion and has therefore a classical "Fickian" character. 
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